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1. Introduction 

The automotive industry is currently focused on development of Advanced Driver Assistance 

Systems (ADAS) and lower levels of automation. Nevertheless, recent years have also seen a 

growing interest in higher levels of vehicle autonomy enabled by Automated Driving Systems 

(ADS). A requirement that has attracted significant scrutineering to make these varying levels 

of autonomy possible is safety. Safety is of paramount importance to all automotive 

applications, especially when driving is based on input data from perception sensors, which 

may degrade due to presence of numerous noise factors including those of environmental 

origin.  

LiDAR (Light Detection and Ranging) sensors have emerged as a promising technology, and 

they are presently under extensive research for automotive applications owing to their high 

spatial resolution, accurate depth perception, and the ability to operate in low-light 

conditions. Most LiDAR sensors are time of flight (TOF) sensors which emit pulsed light waves 

– typically in the near-infrared range – into the surrounding environment. These laser beams 

then bounce off surrounding objects and return to the sensor. The time required for the 

pulses to return enables the calculation of distances to the surrounding objects. This data is 

then used to build a 3D point cloud which contains spatial coordinates of objects and 

additional attributes such as reflection intensity. 

However, this technology is also susceptible to environmental noise factors, such as rain 

precipitation or a spray of muddy water pooled on the road surface, which could cover the 

active face of the sensor and potentially obstruct pulses from being transmitted or received. 

This then raises significant safety concerns, as it may result in data degradation or complete 

signal loss. While there have been research papers investigating these effects through 

simulations, direct empirical investigations of these factors remain relatively scarce. 

This report systematically examines the effects of environmental noise factors, specifically 

LiDAR occlusion with clear and muddy water droplets, through controlled laboratory 

experimentation involving direct application to the active surfaces of tested LiDAR devices. 

The investigation encompasses comparative analysis of state-of-the-art automotive LiDAR 

systems, with particular emphasis on quantifying the degradation of point cloud data quality 

under recreated adverse conditions. Through examination of these interactions, this report 

contributes to a better understanding of how sensors occlusion phenomena could potentially 

impact vehicular safety. 



7 

2. LiDAR Noise Factor Testing in the Lab 

2.1. Equipment 

 LiDAR Sensors 

The experiments we conducted in the laboratory investigated the impact of noise factors on 

three LiDAR sensors, listed in Table 1. The selected sensors are based on solid-state 

technology and have comparable Field of Views (FOV), which facilitated meaningful analysis 

and comparison across the sensors. Two of the LiDARs operate at 905 nm weavelenght and 

one of the sensors at 1550 nm, which allowed for testing of weavelenght-dependent 

susceptibility to noise factors.   

LiDAR A and LiDAR B have flat active surfaces whereas LiDAR C has a convex, bow-front shaped 

active face. This geometric differentiation might be relevant in case the applied noise factors 

behaved differently on flat and curved surfaces. Furthermore, LiDAR B was the largest device 

of the three and also had the largest active face. LiDAR C on the other hand constituted the 

most compact device with correspondingly reduced active face dimensions.  

Table 1: List of LiDARs used in the experiments. 

Sensor 

Model 

Sensing 

Tech. 

Wave-

length 

[nm] 

Range 

[m] 

Range 

Precision 

[cm] 

Points Rate 

[pts/s] 
FOV 

Blind 

Spot 

[m] 

Mass 

[g] 

Ingress 

Protection 

Classification 

LiDAR A 

Non-

repetitive 

scanning 

905 150 ± 3 452,000 120° (Horizontal)
25° (Vertical) 

< 0.5 1120 IP67

LiDAR B

Semi-solid 

state 

1550 250 ± 5 900,000 120° / 40°
(Horizontal  / ROI)

25° / 4.8°  

(Vertical / ROI) 

< 1.5 1700 IP67, IP69K

LiDAR C

MEMS 
solid-
state LiDAR

905 180 ± 5 787,500 (Single)
1,575,000 (Dual)

120°(Horizontal)
25°  (Vertical)

± 0.2°

< 0.5 690 IP67, IP6K9K

 Noise Factor Materials and Equipment 

Figure 1 shows the equipment used for the preparation and application of noise factors. The 

bottles were used for the volumetric measurement of water when preparing for the muddy 

water droplets experiments. The high-precision weighing scale was used to measure out the 

clay powder to formulate muddy droplets of different concentration and viscosity. The petri 

dish was used to mix clay and water for the mud occlusions experiments. The VITLAB 400 ml 

spray bottle, equipped with an adjustable red nozzle, provided controlled dispersion of liquids 
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ranging from fine mist to directed streams, enabling application of both clear and muddy 

water droplets onto active LiDAR surfaces. Standard tap water served as the aqueous 

medium, while the clay powder selected for use in these experiments was Bentonite 285234 

from Sigma Alderich. This substance was selected for its non-hazardous properties and 

straightforward disposal protocols, as noted in its chemical data sheet. 

Figure 1: Noise factor tools and materials. 

 Cleaning Materials and Method 

Cleaning the sensors after each run was a critical aspect of the experimental protocol, 

ensuring all the occlusions are removed before completing another run of experiments, while 

also safeguarding against sensor damage. Furthermore, it was important to avoid introducing 

new noise factors into the experiment such as lint from the wipes used. The manufacturers 

recommend implementing pressurised air into the cleaning process to prevent damage to the 

sensor’s active face. 

To clean the sensors safely and effectively, Kimwipes were used. These disposable wipes can 

remove liquid, dust, and small particles without scratching the lens and are traditionally used 

to clean instruments in laboratories. This was sufficient for wiping the active face clean after 

it was used for a clear water droplet experiment. However, when muddy water was applied, 

the cleaning process became more elaborate. If the droplets had dried, which occurred when 

the sensor was in operation for extended periods of time and became hot, some water was 

sprayed onto the active face to loosen up the dried droplets. Bio-Pure pre-moistened alcohol 

wipes were then used to remove the muddy droplets from the sensor face. This, however, 

would often leave lint on the sensor face, which if directly wiped may have scratched the face, 

hence a second spray of water was reapplied. The sensor was then wiped with Kimwipes and 

allowed to dry.  
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After each cleaning process, the sensor face was visually inspected for presence of any noise 

factors such as lint or streaks from the droplets that were not removed properly. The point 

cloud was further visually inspected to see if the LiDAR output returned close to the baseline 

readings taken in the previous run. 

Figure 2: Cleaning paper wipes. Figure 3: Cleaning wet wipes. 

  PPE 

All three LiDAR units conformed to the Class 1 laser safety standard, rendering them eye-safe 

under normal operating conditions. However, since LiDARs were approached very closely 

when applying noise factors and cleaning, Thorlabs LG2 Laser Safety Glasses (870 – 1600 nm, 

OD = 4+) were worn during the experimentation, out of an abundance of caution. This also 

provided protection against clay powder ingress, thus preventing any harm or irritation. 

Finally, nitrile gloves were worn when handling the clay powder as a safety precaution.  

Figure 4: Laser safety glasses. Figure 5: Gloves. 
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2.2. Experimental Setup 

As shown in Figure 6, traffic cones and calibrated targets were positioned at one end of the 

room, with the LiDAR sensor stationed on the opposite side of the room and oriented towards 

the centre of the target array. This configuration did not need to be changed as all three 

sensors under investigation have the same FOV. 

The experimental setup incorporated one 20x20 cm and one 50x50 cm, 90%-reflectivity 

calibrated target sourced from Zenith Lite. These are built from 1 mm or 2 mm proprietary 

polymer diffuser bonded to a 10-15 mm aluminium honeycomb structured plate with a high-

performance adhesive. Complementing these reflectance boards, three traffic cones were 

strategically positioned to provide insight into the varied effect across the FOV when a noise 

factor is applied. 

As depicted in Figure 6, the experimental chamber featured white interior walls, 

supplemented by a white curtain on the left and white blinds on the right. The blinds were 

fully closed to block any external illumination. Artificial room lighting was maintained at 

maximum intensity to ensure optimal visibility for the researchers, while also establishing 

consistent ambient lighting conditions across the experimental runs. Using a JETI Spectraval 

1511 spectroradiometer, eleven luminance measurements were taken at distinct locations 

within the room. The brightest region registered 186.8 cd/m2 and the lowest 115.8 cd/m2. 

The average luminance in the laboratory was 156.2091 cd/m2 with a standard deviation of 

24.4192 cd/m2.  

Figure 6: WMG Perception Sensors Testing Laboratory. 
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2.3. Experimental Procedure 

 Baseline LiDAR Readings 

Prior to collecting data for the experimental runs, a baseline measurement was necessary. 

This was accomplished by placing the sensor in the correct position and keeping it stationary, 

followed by recording a 10-second ROS bag without any water or mud occlusion. Obtaining 

these measurements without noise factors allowed for comparisons with subsequent 

readings when noise factors were applied. If the LiDAR was accidentally moved, a new 

baseline had to be recorded to ensure accurate metric assessment and valid comparisons. 

 Photos of the Active Face of LiDAR Sensor   

To quantify the amount of water and mud applied to the sensor, a DSLR camera mounted at 

a fixed height and position on a tripod was used to capture the images of the LiDAR’s front 

face. These images were then further processed – as explained in the methodology section – 

to determine the percentage of the sensor’s active surface area affected by the noise factors. 

The tripod position was marked with tape (as seen in Figure 7) because the tripod had to be 

moved whenever a LiDAR ROS bag was being collected. This ensured the photos of the sensor 

front face were consistent in terms of positioning, lighting, and height whenever the noise 

factors were applied. Furthermore, all photos were captured with flash to help highlight the 

droplets for improved algorithmic detection during image processing.  

Figure 7: Camera setup for taking photos of the LiDAR front face. 
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2.4. Study A: Clear Water Droplets 

To collect ROS bags containing LiDAR point cloud data, the following method was followed: 

First, a baseline recording was taken as outlined previously.  

Next, a spray bottle was filled with at least 200 ml of water. The sensor was then sprayed once 

from a consistent level relative to the sensor face, and a photo of the sensor’ active face was 

taken with the DSLR camera. 

Subsequently, a ROS bag of the LiDAR data with noise factor applied was recorded. This 

process was repeated two more times without wiping the sensor, with the sensor being 

sprayed twice (in total) on the second run and three times (in total) on the third run. If the 

sensor moved due to any circumstances, a new baseline was taken prior to continuation. 

This progressive approach was done to gradually increase droplet coverage of the active face. 

Finally, the sensor was wiped clean as directed before. This process was then repeated six 

more times giving a total of seven sets of data. This procedure is outlined in Figure 8. 

Figure 8: Experimental design for clear water droplets study. 
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2.5. Study B: Muddy Water Droplets 

To collect ROS bags containing LiDAR point cloud data, the following method was followed: 

First, a baseline recording was taken as outlined previously. 

Next, a spray bottle was filled with 100 ml of water. One scoop or 1.48 g of the clay powder 

was added to the spray bottle using the spatula with a measuring spoon on one end, and the 

bottle was shaken vigorously to mix well. The sensor was then sprayed once from a consistent 

level relative to the sensor’s active face, and a photo of the active face was taken with the 

DSLR camera. 

Afterwards, a ROS bag of the LiDAR data with noise factor applied was recorded. This process 

was repeated two more times without wiping the sensor, with the sensor being sprayed twice 

on the second run and three times on the third run. If the sensor moved due to any 

circumstances, a new baseline was taken before continuing.  

This was done to gradually increase how much of the active face was covered with muddy 

water droplets. After three experimental runs, the sensor was wiped clean as directed before. 

The muddy water was disposed from the bottle by pouring down the sink. The nozzle was 

cleared out by spraying until no further liquid exited. This ensured none of the solution from 

the previous test remained within the bottle. This process was then repeated four more times, 

but each time an extra scoop or approximately 1.5 g was added making the solution more 

concentrated with clay powder, hence creating more opaque droplets. The entire procedure 

is outlined in Figure 9. 

Figure 9: Experimental design for muddy water droplets study. 
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2.6. Quantifying the Percentage of LiDAR’s Active 

Face Affected by the Noise Factors 

The sprayer bottle shown in Figure 1 contains an adjustable nozzle mechanism capable of 

modifying the fineness of the water mist, thereby manipulating the size of water droplets 

created on LiDAR. However, the amount of droplets on the sensor’s surface also depends on 

the duration of trigger actuation and the angle at which the spray is applied relative to the 

sensor plane. This can introduce potential inconsistencies in LiDAR’s front face occlusion 

across the experiments. Consequently, evaluating the level of droplet occlusion based solely 

on the number of sprays becomes problematic, necessitating other quantitative approaches.

One way of achieving this is by utilising a DSLR camera to capture photos of the active face of 

the LiDAR after applying noise factors, as discussed in Section 2.3. These images can then be 

processed in MATLAB to identify the droplets on the sensor’s surface using image recognition 

and processing techniques. Once the droplets have been identified, the proportion of the 

LiDAR’s front face affected by the droplets can be quantified. The specific algorithms used to 

accomplish this are described in the following sections.

 Imbinarise Image Processing Method 

Imbinarise is a built-in MATLAB function that takes a greyscale image and sets all the pixels to 

either one or zero based on a user-defined threshold value for brightness. This works well in 

most scenarios where water droplets are present, as they usually appear in the image 

foreground and are usually denoted with higher pixel brightness due to internally reflecting 

the light source, which makes them brighter than other objects in the image. This can be seen 

in Figure 10. However, Imbinarise is vulnerable to noise from light sources captured in the 

image, such as the sun, which can be particularly problematic in outdoor images, as shown in 

Figure 11. This could potentially reduce the accuracy of identifying the percentage of the 

sensor screen obscured by water droplets.  

Figure 10: Imbinarise simpler example. Figure 11: Imbinarise more challenging example.
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 Canny Edge Detection 

Canny Edge Detection is an image recognition algorithm that works by detecting the ridges in 

the image caused by a gradient magnitude in pixels around these edges. The algorithm then 

traces these ridges and sets all the pixels that are not on top of the ridge to zero and the pixels 

along the ridge to one. This allows for the detection of irregular shapes and the detection of 

smaller water droplets that might be overlooked by the Circle Hough Transform algorithm, as 

illustrated in Figure 12. This algorithm, however, detects all the edges in the image including 

objects in the background such as trees or signage which commonly occur along the roadside, 

as illustrated in Figure 13. This challenge could be addressed by combining Canny Edge 

Detection with other image recognition techniques to filter out unwanted objects, but this 

may inadvertently lead to some data loss.  

Figure 12: Canny Edge Detection simpler 
example. 

Figure 13: Canny Edge Detection more challenging 
example. 

 Combining Morphological Operations with Canny Edge 

Detection and Imbinarise 

Morphological operations encompass a wide range of image processing techniques that 

process images based on shapes. In a morphological operation, each pixel in the image is 

adjusted based on the value of other pixels in its neighbourhood. By choosing the size and 

shape of the neighbourhood, it is possible to construct a morphological operation that is 

sensitive to specific shapes within the input image.

Canny Edge Detection provides the outlines of edges of all the objects within a frame. 

However, water droplets are circular in nature and using the morphological operations it is 

possible to highlight only these “disks” rather than the lines. Furthermore, using the function 

“imclose” any circular features that may have gaps or are not fully closed as seen in Figure 14, 

will be completed allowing the morphological operation “imfill” to fill these holes as white 
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dots, which is better illustrated in Figure 15. This can be particularly useful in the scenario 

where a camera is positioned to take an image of the LiDAR active face to quantify the 

percentage of LiDAR screen area affected by water droplets.  

Figure 14: Canny Edge Detection with Morphological Operations. 

Figure 15: Canny Edge Detection with Morphological Operations. 

 Processing the Images from the Laboratory Experiments 

Before using MATLAB to process the images, the images had to be cropped to only contain 

the front face of the sensor. The DSLR camera outputted the images files in two file formats, 

out of which only the JPG was used. To improve algorithm performance, these cropped 

images had their brightness and exposure increased to 100% while decreasing the contrast to 

-100% using a photo editor application. The two different methods were used in tandem to 

achieve optimal results when processing the images captured in the laboratory.

It was observed that Canny Edge Detection produced better results than the Imbinarise when 

attempting to identify the water droplets. This was because some water droplets were 

transparent, not reflecting the flash of the camera or room lights, which lead to significantly 

lower percentages outputted.

However, as the muddy droplets were somewhat opaque, the Imbinarise produced 

satisfactory results and performed better than the Canny Edge Detection. With larger 

droplets, though their edges were detected, the Canny Edge Detection struggled to close 

these large areas. To combat this, the parameter to set the size of the disk to be filled was 

increased. However, this caused multiple droplets to be combined as one chain and outputted 

substantial portions of the image to have supposedly been affected.
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Our code iterates through a folder of the images and applies the chosen algorithm, the result 

of which is then outputted as a figure. The output figure contains two images: the original 

image and the binary image highlighting the droplets, along with a percentage indicating how 

much of the image is covered in droplets. The image name and the percentage output are 

then saved to a CSV file, and the processed image is saved to the same folder. Examples of 

the outputs can be seen in Figure 16 and Figure 17.

Figure 16: Clear water droplet detection output 
using Canny Edge Detection. 

Figure 17: Muddy water droplet detection 
output using Imbinarise. 

 Quantifying the impact on LiDAR point cloud 

To quantify the potential impact of noise factors on point clouds, first we computed the 

number of points (point count) in a single frame or the baseline point cloud, which was 

recorded with a clean sensor. For an occluded sensor, 11 frames were selected from the point 

cloud and its number of points counted, then expressed as a percentage of the point count of 

the baseline frame. Therefore, a relative point count was computed for each frame. Finally, 

the average and standard deviation of the relative point count was calculated across the 11 

frames to characterise the point cloud recorded under a droplet occlusion. The hypothesis 

was that droplet occlusions might block some of the LiDAR beams leaving or entering the 

sensor, thereby reducing the overall point count. 

Another crucial metric was the intensity of points in the LiDAR point cloud. This was, however, 

computed not on the entire point cloud but only on the points falling on a calibrated 

reflectance board. Figure 18 shows the visualisation of the entire point cloud capturing the 

experimental area, as well as the cropping and extraction of the points belonging solely to the 

calibrated reflectance board. Average intensity and standard deviation of intensity of those 

points were computed to investigate the impact of droplet occlusion on LiDAR intensity. The 

hypothesis was that droplet occlusions would reduce the intensity by absorbing some of the 

energy of the LiDAR beams. 
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2.7. Results 

 Clear Water Droplets 

Figure 19, Figure 20, and Figure 21 show the relationship between the clear water droplet 

coverage (the percentage of LiDAR front screen area covered by clear water droplets) and the 

relative point count (the number of points in the occluded point cloud compared to the 

number of points in the baseline point cloud recorded with a clean screen), for LiDAR A, LiDAR 

B, and LiDAR C, respectively. Each sphere represents one point cloud recording with its size 

proportional to the standard deviation of the relative point count. The linear regression trend 

line was estimated assuming the intercept of 100% because the baseline point cloud was 

recorded with 0% droplet coverage and its relative point count is 100%. 

For LiDAR A and LiDAR C a weak negative relationship was observed between the independent 

and dependent variables, suggesting that even clear water droplets might have some ability 

to block LiDAR beams and reduce the number of points in the point cloud. For LiDAR B, the 

(a) 

(b) (c) 

Figure 18: : (a) LiDAR point cloud showing the entire experimental area with targets; (b) cropped area 
including one reflectance board; (c) isolated points of the calibrated reflectance board and intensity 
metrics.
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relative point count seemed almost unaffected by the amount of water droplet coverage, 

suggesting that the longer wavelength LiDAR (1550 nm) might be more robust compared to 

the wavelength of 905 nm. 

Figure 19: Relationship between the clear water droplet coverage and the relative point count for 
LiDAR A. 

Figure 20: Relationship between the clear water droplet coverage and the relative point count for 
LiDAR B. 
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Figure 21: Relationship between the clear water droplet coverage and the relative point count for 
LiDAR C. 

Figure 22: Relationship between the clear water droplet coverage and average point intensity on 
the calibrated reflectance board. 
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For LiDAR C a strong negative relationship was observed between the coverage percentage 

and the average intensity of points on the calibrated reflectance board (see Figure 22). This 

suggest that the impact of clear water droplet occlusion might be manifesting more as a 

decreased intensity rather than a marked decrease in the point count, which would occur if 

the beams were strongly absorbed or fully blocked. 

 Muddy Water Droplets 

Figure 23, and Figure 24, and Figure 25 depict the relationship between muddy water droplet 

coverage (the percentage of LiDAR front face covered by muddy water droplets) and relative 

point count (the number of points in the occluded point cloud compared to the number of 

points in the baseline point cloud recorded with a clean screen) for LiDAR A, LiDAR B, and 

LiDAR C, respectively. The negative relationship between the droplet coverage and the 

number of points speaks to the ability of muddy water droplets to block LiDAR beams and 

reduce the number of points in the point cloud. For LiDAR B, however, the R2 value is almost 

zero, which could be a consequence of low variability in droplet coverage across the 

experiments. 

Figure 23: Relationship between the muddy water droplet coverage and the relative point count for 
LiDAR A. 
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Figure 24: Relationship between the muddy water droplet coverage and the relative point count for 
LiDAR B. 

Figure 25: Relationship between the muddy water droplet coverage and the relative point count for 
LiDAR C. 
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Figure 26: Relationship between the muddy water droplet coverage and average point intensity on 
the calibrated reflectance board. 

For LiDAR C additionally, no relationship was observed between the coverage percentage and 

the average intensity of points on the calibrated reflectance board (see Figure 22), despite 

forcing the 90% intercept, as can be seen in the R2 value of almost zero. This suggests that 

muddy water droplet occlusion might manifest more via blocking the beams (reducing the 

point count) rather than reducing the point intensity. 

Lastly, we examined the impacts of the varying mud concentration (the amount of clay 

powder in the muddy water). Figure 27 shows the relationship between the mud 

concentration level and the percentage of the surface area of the LiDAR front screen covered 

by the muddy water droplets, for three LiDARs combined. As can be seen from the Box and 

Whisker plot, higher mud concentration leads to higher coverage of the LiDAR front screen. 

This could be the result of multiple factors. Firstly, the Imbinarise algorithm might be better 

at detecting muddier water droplets due to their higher opaqueness. Secondly, muddy water 

droplets with higher mud concentration might have better ability to grip onto the LiDAR 

screen due to increased viscosity. Higher mud concentrations also lead to lower relative point 

count for three LiDARs combined (see Figure 28), demonstrating the ability of clay particles 

to interact with LiDAR beams. 
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Figure 27: Relationship between clay concentration level and muddy water droplet coverage. 

Figure 28: Relationship between the mud concentration level and relative point count. 
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3. Conclusions 

This report introduces a novel methodology for studying LiDAR noise factors, based on 

experimental data collected in the WMG Perception Sensors Testing Laboratory. The study 

focused on the effects of direct LiDAR occlusion caused by clear water droplets and muddy 

water droplets. 

The proposed method presents a replicable procedure using simple tools and a safe chemical 

– a type of clay powder – that poses no health hazards (e.g., it contains no silica dust) and has 

no workplace exposure limits (unlike the kaolin clay). However, PPE (glasses, gloves, mask) 

were still used in accordance with the chemical’s Safety Data Sheet. 

Several limitations of this method for creating occlusions were identified: 

 Although clay powder is a key component of the real mud, it may not be fully 

representative of the complexity of real mud which is comprised of many substances 

of varying particle sizes. 

 The clay powder used in experiments is somewhat hydrophobic, leading to clumping 

and difficulty in mixing it into a homogeneous liquid. 

 The sprayer bottle used did not guarantee consistent amounts dispersed with each 

spray. It also occasionally struggled with clumps in the muddy water. 

 Clear water droplets tended to agglomerate and leak down the sensor, creating 

streaky marks. In contrast, muddy water was found to adhere better to the LiDAR 

surface, likely due to increased viscosity. 

 Spraying muddy water proved somewhat messy, as it could enter the crevices of the 

LiDAR device, complicating the cleaning process. Covering parts of the LiDAR with 

paper towels alleviated some of this problem, but not entirely. 

 Despite the small size of clay particles, wiping them of the LiDAR active surface could 

result in microscopic scratches, potentially damaging the device and compromising 

data quality. 

The method of using images of the LiDAR front screen to quantify droplet coverage appears 

appropriate, although the following limitations were observed: 

 As LiDAR front faces are made of a transparent material (glass), they can exhibit 

mirroring effects. This can result not only with the camera and flash showing in the 

photo of the LiDAR but also as many droplet occlusions being shown double. 

 The photo of the LiDAR front face does not capture the curvature of the front face, so 

the method may not work for curved faces as well as for flat LiDAR faces. 

 After taking the picture of the LiDAR front face, the tripod-mounted camera must be 

removed for each data collection. This means it is difficult to ensure that the camera 

is always in the exact same position and orientation. 

 The algorithms used for computing the LiDAR coverage with clear or muddy droplets 

are not flawless, which means they can potentially underestimate or overestimate 

the real coverage. This can be observed in some of the examples shown in the 

Appendix. 
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 Furthermore, the active area of the LiDAR front face – through which beams 

leave/enter the sensor – is smaller than the full screen area. In our coverage 

computation, we considered the entire screen of the LiDAR. However, we also 

recomputed the coverage by assuming a perimeter of 10% width/height as the 

inactive area, but this did not significantly alter the results or conclusions. This 

suggests the droplets were relatively homogenously distributed across the active face 

in our experiments, which may not always be the case in real-life conditions. 

The key takeaways from this research are the following: 

 LiDAR occlusions have a marked potential to impact data quality, which could further 

compromise its performance as automotive perception sensors. 

 Muddy water droplets, and mud splotches in particular, are problematic as they can 

block infrared beams, creating missing information in the point cloud. Unlike mud 

splotches which block 100% of the beams, muddy water is typically semi-transparent 

depending on the concentration of mud. 

 Clear water droplets, however, also present potential problems, as evidenced by their 

impact on the points cloud, affecting both the number of points and their intensity. 

 The 1550 nm wavelength LiDAR appears to be (potentially) more robust against clear 

water droplet occlusion compared to the 905 nm wavelength LiDAR, although further 

research is needed to confirm this. 

 For real-world applications of automotive LiDAR sensors as part of automated driving 

systems (ADS) or advanced driver-assistance systems (ADAS), regular cleaning of 

sensor surfaces from soiling and occlusion is essential to prevent data degradation 

and ensure reliable and safe deployment. 



Appendix I – Datasets 

This Appendix includes the images of occluded LiDAR front faces for all the experiments. 
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3.1. Water Droplets 

 LiDAR A 

Test Set A

Test 1 Test 2 Test 3

8.02% 10.75% 20.08%

Test Set B

Test 1 Test 2 Test 3

9.25% 4.1% 8.81%

Test Set C

Test 1 Test 2 Test 3

8.76% 13.97% 11.62%

Test Set D

Test 1 Test 2 Test 3

17.29% 13.51% 13.49%
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Test Set E

Test 1 Test 2 Test 3

5.42% 9.4% 11.32%

Test Set F

Test 1 Test 2 Test 3

19.84% 7.1% 6.96%

Test Set G

Test 1 Test 2 Test 3

7.75% 5.79% 9.08%

 LiDAR B 

Test Set A

Test 1 Test 2 Test 3

14.56% 11.47% 10.33%
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Test Set B

Test 1 Test 2 Test 3

20.64% 5.84% 10.49%

Test Set C

Test 1 Test 2 Test 3

12.4% 13.7% 12.93%

Test Set D

Test 1 Test 2 Test 3

16.6% 13.16% 11.32%

Test Set E

Test 1 Test 2 Test 3

19.48% 19.3% 11.85%

Test Set F

Test 1 Test 2 Test 3
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21.27% 11.75% 11.8%

Test Set G

Test 1 Test 2 Test 3

10.95% 10.67% 14.21%

 LiDAR C 

Test Set A

Test 1 Test 2 Test 3

14.31% 13.49% 16.74%

Test Set B

Test 1 Test 2 Test 3

15.04% 14.74% 13.33%

Test Set C
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Test 1 Test 2 Test 3

13.58% 12.61% 13.14%

Test Set D

Test 1 Test 2 Test 3

17.41% 19.42% 17.75%

Test Set E

Test 1 Test 2 Test 3

12.42% 13% 12.1%

Test Set F

Test 1 Test 2 Test 3

8.37% 2.88% 11.39%

Test Set G

Test 1 Test 2 Test 3
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6.53% 8.92% 9.62%
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3.2. Muddy Water Droplets 

 LiDAR A 

Test Set A

Test 1 Test 2 Test 3

6.8% 8.4% 9.9%

Test Set B

Test 1 Test 2 Test 3

7.2% 7.84% 6.18%

Test Set C

Test 1 Test 2 Test 3

8.12% 10.45% 9.35%

Test Set D

Test 1 Test 2 Test 3

10.31% 10.57% 7.75%

Test Set E
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Test 1 Test 2 Test 3

10.85% 7.45% 6.46%

Test Set A

Test 1 Test 2 Test 3

6.8% 8.4% 9.9%

Test Set B

Test 1 Test 2 Test 3

7.2% 7.84% 6.18%

Test Set C

Test 1 Test 2 Test 3

8.12% 10.45% 9.35%

Test Set D

Test 1 Test 2 Test 3
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10.31% 10.57% 7.75%

Test Set E

Test 1 Test 2 Test 3

10.85% 7.45% 6.46%

 LiDAR B 

Test Set A

Test 1 Test 2 Test 3

13.79% 10.84% 9.64%

Test Set B

Test 1 Test 2 Test 3

13.89% 13.1% 11.1%

Test Set C

Test 1 Test 2 Test 3
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13.36% 13.62% 14.96%

Test Set D

Test 1 Test 2 Test 3

14.45% 13.3% 13.36%

Test Set E

Test 1 Test 2 Test 3

15.78% 16.92% 16.4%

 LiDAR C 

Test Set A

Test 1 Test 2 Test 3

8.94% 7.56% 8.14%

Test Set B

Test 1 Test 2 Test 3
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6.69% 7.38% 7.93%

Test Set C

Test 1 Test 2 Test 3

6.48% 14.14% 26.78%

Test Set D

Test 1 Test 2 Test 3

12.39% 16.16% 20.18%

Test Set E

Test 1 Test 2 Test 3

14.64% 1.59% 24.59%
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